Аннотация к рабочей программе дисциплины «Методы оптимальных решений»

- Цель и задачи изучения учебной дисциплины

<u>Целью изучения курса «Методы оптимальных решений» является</u> освоение студентами методов и моделей исследования экономических операций, помогающих принимать оптимальные решения.

В ходе учебной работы решаются следующие основные задачи:

- 1. формирование у студентов методов математического моделирования экономических явлений и процессов
- 2. освоение студентами различных вариаций симплекс-метода решения задач линейного программирования
- 3. овладение студентами геометрического метода решения задач линейного программирования
- 4. освоение студентами методами построения двойственных задач линейного программирования
- 5. изучение студентами методов решения транспортной задачи
- 6. формирование у студентов навыков решения задач целочисленного линейного программирования
- 7. освоение студентами различных методов решения задач не линейного программирования
- 8. изучение студентами способов решения задач динамического программирования
- 9. формирование у студентов навыков построения сетевых моделей
- 10. освоение студентами структуры, классификации и других основных понятий систем массового обслуживания
- Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы
- В результате изучения дисциплины выпускник образовательной программы по направлению 38.04.01 «Экономика» должен обладать следующими профессиональными компетенциями:
- ОПК-3: владение необходимой системой знаний об актуальных практиках и научных исследованиях, соответствующих профилю подготовки.

<u>В ходе обучения дисциплины студенты готовятся к следующим видам</u> деятельности:

- 1. аналитическая деятельность
- 2. научно-исследовательская деятельность
- 3. педагогическая деятельность

В результате изучения дисциплины будущий магистр «Экономики» должен знать и уметь применять на практике:

- 1) методы решения задач линейного программирования
- 2) способы решения транспортной задачи
- 3)метод множителей Лагранжа для решения задач нелинейного программирования
- 4) составлять задачу линейного программирования, двойственную к исходной
- 5) двойственный симплекс-метод
- 6)метод Гомори для решения задач целочисленного линейного программирования
- 7) способ ветвей и границ
- 8) методы решения задач динамического программирования
- 9) составлять сетевые модели

Приобрести опыт деятельности в рамках своей компетенции.

- Место учебной дисциплины в структуре ОП ВО

Современное образование в области экономики не может считаться полноценным без изучения методов оптимальных решений.

Оптимизация - это выбор наилучшего варианта из множества возможных. В том случае, если критерий выбора существен и вариантов не много, то решение можно найти путём перебора и сравнения всех вариантов. Но чаще всего бывает так, что полный перебор практически невозможен . В таких случаях составляют математическую модель решаемой задачи и используют методы поиска оптимального решения, т.е. оптимизации .

Изучение методов оптимальных решений способствует формированию будущих магистров «Экономики» навыков самостоятельного решения различных прикладных экономических задач.

Дисциплина относится к дисциплинам по выбору вариативной части первого блока рабочего учебного плана, шифр Б1.В.ДВ.2.

- Объем дисциплины

№ п/п	Семестр	Трудоемкость		нные (час.)	Я	ческие г (<i>час.</i>)		<i>(</i>	IB	В
		зач. ед.	час	Лекционные занятия (<i>час</i> .	Лабораторны е занятия (<i>час.</i>)	Практичес занятия (<i>ч</i> .	KCP (4ac.)	CPC (4ac,	Контроль	Форма контроля
очная	2	108	108	10	-	26	-	72	-	зачет
заочная	2	108	108	4	-	12	-	88	4	зачет

Структура дисциплины (перечисление основных разделов дисциплины)

Тема 1. Линейное программирование.

- Тема 2. Транспортная задача как специальная задача линейного программирования.
 - Тема 3. Целочисленное линейное программирование.
 - Тема 4. Нелинейное программирование.
 - Тема 5. Динамическое программирование.
 - Тема 6. Сетевое планирование и управление.
 - Тема 7. Системы массового обслуживания (СМО).
- Виды занятий и их содержание:
 - Лекционные занятия (теория, просмотр презентаций, обсуждения, дискуссии);
 - Семинары (тесты, индивидуальные и групповые письменные работы, доклады);
 - Лабораторные занятия (практическая отработка для полноценного и всеобъемлющего усвоения материала);
- Общая трудоёмкость дисциплины составляет 108 часов
- Форма контроля: зачёт